Interaction of Hydrogen Peroxide with Nanoporous Material Prepared by Alkaline Activation of the Brown Coal
Alexandra Sergeevna Gribanova, Vladimir Alexandrovich Kucherenko, Tetyana Georgievna Shendrik, Yuliya Vladimirovna Tamarkina
Abstract
The work analyzes applications of carbon adsorbents in catalytic wet peroxide oxidation (CWPO) being a variant of Advanced Oxidation Processes (AOPs). Under CWPO condition (concentration [Н2О2] ≤ 30 %, 20±2°C) we have studied the activity of nanoporous adsorbent АC-К prepared by КОН-activation (800°C, 1 h) of brown coal. We have compared АC-К with solid product of thermolysis (SPT) of brown coal formed under the same conditions without КОН. АC-К, which has a high adsorbtion activity, catalyzes decomposition of Н2О2 to form ОН-radicals. This allows to combine two environmentally important processes: concentration of organic pollutants on the surface of adsorbent and their further decomposition by ОН-radicals.
Decomposition of Н2О2 in presence of АC-К or SPT is described by kinetic first-order equation and runs 20-30 times faster in contact with АC-К. Rate constants vary within the range of 0.053-0.28 min-1 (АC-К) and 0.002-0.012 min-1 (SPT) and grow under [Н2О2] increasing. Oxidative modification of АC-К and SPT surfaces under CWPO conditions has been studied. The dependence between content of ОН groups in modified АC-К (24 h) samples and [Н2О2] is described as a curve with a maximum at [Н2О2] = 10 %, where the maximum modifying effect and the highest increse in ОН-groups content (from 1.00 to 1.55 mmole/g) are observed. Modification level is negligible; only 1 % of oxidant reacts to form functional groups.